SYNTHESIS OF OLIGO(ETHYLENE GLYCOL) DERIVATIVES

Halil HOSGOREN, Nureddin COLAK and Nermin OZTURKMEN

Department of Chemistry, Faculty of Arts and Sciences, University of Dicle, 21280 Diyarbakir, Turkey

> Received January 7, 1993 Accepted September 14, 1993

Oligo(ethylene glycol) derivatives were obtained by the reaction of oligo(ethylene glycol) chlorohydrins with epichlorohydrin using H_2SO_4 catalyst and subsequent treatment with NaOH in ether solution. The structure of the obtained products was characterized by ¹³C NMR and IR spectra.

Kharash and Nudenberg¹ reported that the polyfunctional 1-chloro-3-(2-hydroxyethoxy)-2-propanol can be synthesized by treating ethylene glycol with epichlorohydrin (ECH) in the presence of H_2SO_4 . Werner and Farenhorst² prepared aromatic bisglycidyl ethers from ECH and dihydric phenols in basic media. In the following years, the condensation of some hydroxyalkyl ethers with phenol and 1- and 2-naphthol without acid catalyst was studied by Petrov and Stephenson³. In their study, the addition to epoxide ring was achieved by thermal treatment. The base-catalyzed reaction of ECH with catechol and monohydric phenols was made by Stephenson⁴. The reaction of glycol chlorohydrins, instead of glycols, with ECH in the presence of H_2SO_4 was studied by Kawai⁵. Some polyglycols were prepared by Erk et al.^{6 - 8} to be further used in the synthesis of polyoxalactones and macrocyclic ethers. Furthermore, the reaction of oligo(ethylene glycols) with some aromatic and aliphatic asymmetric epoxides in the presence of HClO₄ was studied by Erk^{9,10}.

In recent years, many epoxides and diepoxides such as oligo(ethylene glycol) diglycidyl ethers, 2-substituted 2-(chloromethoxy)oxiranes^{11,12} and 1,2-bis(2,3-epoxypropoxy)benzene¹³ were prepared for the synthesis of macrocyclic ethers.

In this study, some oligo(ethylene glycol) derivatives were prepared as intermediates for the synthesis of crown ethers bearing alcohol groups.

EXPERIMENTAL

¹³C NMR spectra of *I* and *II* were recorded in $CDCl_3$ with proton noise decoupling using a Bruker AC 50.33 MHz FT spectrometer. Internal field frequency stabilization was provided by lock signal from TMS dissolved in the solvent. IR spectra were recorded in $CHCl_3$ solutions using Perkin–Elmer 782 model IR spectrophotometer.

Oligo(ethylene Glycol) Derivatives I

ECH (1 mol) was added to oligo(ethylene glycol) chlorohydrin (2 mol) with catalytic amount of H_2SO_4 (98%) and refluxed at 140 – 170 °C for 10 h (Scheme 1). After cooling the reaction mixture was neutralized with NaHCO₃ and distilled under reduced pressure.

Oxiranes II

I (0.3 mol) was dissolved in 200 ml of ether and cooled to 0 °C. Powdered NaOH (0.36 mol) was added portionwise into the solution during 2 h while stirring (Scheme 2). The reaction mixture was further stirred at 0 °C for 2 h and at room temperature for 2 h. The ether phase was washed with water several times to remove the unreacted NaOH and dried over Na_2SO_4 . Ether was evaporated and the products were distilled under reduced pressure.

Scheme 2

RESULTS AND DISCUSSION

In this study new oligo(ethylene glycol) derivatives *I* and *II* were synthesized. In addition, the compounds were characterized by ¹³C NMR and IR spectroscopic measurements. Some properties of the products are given in Table I.

In the ¹³C NMR spectra of both I (n = 0) and II (n = 0), 5 peaks related to 5 different C atoms were observed. However, in the other I and II, only two and one signals, respectively, were observed for the carbons of the repeating units (Tables II and III).

In the IR spectra of *II*, the most characteristic asymmetrical C–O–C stretching band and the symmetrical stretching band of epoxy ring appeared at 1 125 cm⁻¹ and 1 250 cm⁻¹, respectively. An additional evidence for the formation of epoxy ring was the disappearance of OH band (3 500 cm⁻¹), which was present in the starting *I*.

New Compounds

TABLE I

Characteristics of oligo(ethylene glycol) derivatives I and II

Compound	B.p. °C/kPa	$n_{\rm D}^{25}$	Yield %	Formula (M. w.)	Calculated/Found	
					% C	% H
<i>I</i> , <i>n</i> = 0	140 - 144/2.7	1.4750	40	C ₅ H ₁₀ Cl ₂ O ₂ (173.0)	34.68 34.79	5.78 5.80
<i>I</i> , <i>n</i> = 1	126 - 128/0.2	1.4741	55	C ₇ H ₁₄ Cl ₂ O ₃ (217.1)	38.71 38.83	6.45 6.44
<i>I</i> , <i>n</i> = 2	148 - 153/0.2	1.4691	50	C ₉ H ₁₈ Cl ₂ O ₄ (261.1)	41.38 41.45	6.90 6.92
<i>I</i> , <i>n</i> = 3	176 - 184/0.2	1.4727	34	C ₁₁ H ₂₂ Cl ₂ O ₅ (305.2)	43.28 43.34	7.21 7.20
II, n = 0	96 - 100/2.7	1.4497	51	C ₅ H ₉ ClO ₂ (136.6)	43.96 43.86	6.59 6.57
<i>II</i> , <i>n</i> = 1	96 - 100/0.2	1.4558	41	C ₇ H ₁₃ ClO ₃ (180.6)	46.54 46.63	7.20 7.22
<i>II</i> , <i>n</i> = 2	128 - 130/0.2	1.4594	42	C ₉ H ₁₇ ClO ₄ (224.7)	48.11 48.00	7.57 7.56
<i>II</i> , <i>n</i> = 3	162 - 166/0.2	1.4610	56	C ₁₁ H ₂₁ ClO ₅ (268.6)	49.16 49.25	7.82 7.84

TABLE II 50.33 MHz decoupled ¹³C NMR chemical shifts (ppm) of I in CDCl₃

Carbon	n = 0	n = 1	<i>n</i> = 2	<i>n</i> = 3
1	42.58	45.53	42.29	42.25
2	71.45	71.84	71.65	71.57
3	71.02	70.99	70.74	70.63
4	69.75	69.95	69.66	69.54
5	45.58	45.63	45.46	45.41
in repeating	_	70.45	69.97	69.87
unit	-	70.21	70.23	70.12

1			5	
Carbon	n = 0	n = 1	<i>n</i> = 2	<i>n</i> = 3
1	42.49	42.28	42.09	42.33
2	70.86	70.67	70.36	70.82
3	71.38	71.39	71.09	71.49
4	50.23	50.11	49.77	50.28
5	43.46	43.39	43.00	43.64
in repeating unit	-	69.94	69.63	70.10

TABLE III					
50.33 MHz decoupled	¹³ C NMR	chemical	shifts (ppm)) of H in (CDCl ₂

REFERENCES

- 1. Kharash M. S., Nudenberg W.: J. Org. Chem. 8, 189 (1943).
- 2. Werner E. G. G., Farenhorst E.: Rec. Trav. Chim. 67, 438 (1948).
- 3. Petrov V., Stephenson O.: J. Pharm. Pharmacol. 6, 198 (1954).
- 4. Stephenson O.: J. Chem. Soc. 1954, 1571.
- 5. Kawai T.: Nippon Kagaku Zasshi 80, 88 (1953).
- 6. Erk C., Sezgin M.: Commun. Fac. Sci. Ankara, B 24, 75 (1978).
- 7. Erk C., Hosgoren H.: Commun. Fac. Sci. Ankara, B 26, 17 (1981).
- 8. Erk C., Hosgoren H.: Polym. Bull. 5, 47 (1981).
- 9. Erk C.: Polym. Bull. 2, 455 (1980).
- 10. Erk C.: Polym. Bull. 10, 315 (1989).
- 11. Nakutsuji Y., Kikui T., Ikeda I., Okahara M.: Bull. Chem. Soc. Jpn. 59, 315 (1986).
- 12. Pugia J. M., Knudsen E. B., Cason C. V., Bartch A. R.: J. Org. Chem. 52, 541 (1987).
- 13. Hosgoren H.: Turk. J. Chem. 15, 286 (1991).